

Improved toughness; low flow

Celcon® acetal copolymer grade M25 is a high molecular weight, higher toughness and impact resistance grade primarily used for extrusion and selected injection molding applications.

Chemical abbreviation according to ISO 1043-1: POM

Please also see Hostaform® C 2521.

Product information

Part Marking Code	POM		ISO 11469
Rheological properties			
Melt volume-flow rate Temperature	2.2 190	cm ³ /10min	ISO 1133
Load	2.16		
Moulding shrinkage, parallel	2.10	•	ISO 294-4, 2577
Moulding shrinkage, normal	1.8		ISO 294-4, 2577
Typical mechanical properties			
Tensile Modulus	2460	MPa	ISO 527-1/-2
Yield stress, 50mm/min	62	MPa	ISO 527-1/-2
Yield strain, 50mm/min	13	%	ISO 527-1/-2
Flexural Modulus	2430	MPa	ISO 178
Flexural Stress at 3.5%		MPa	ISO 178
Compressive stress at 1% strain		MPa	ISO 604
Shear Modulus		MPa	ISO 6721
Tensile creep modulus, 1h		MPa	ISO 899-1
Tensile creep modulus, 1000h		MPa	ISO 899-1
Charpy impact strength, 23°C		kJ/m²	ISO 179/1eU
Charpy impact strength, -30 °C		kJ/m²	ISO 179/1eU
Charpy notched impact strength, 23°C		kJ/m²	ISO 179/1eA
Izod notched impact strength, 23°C		kJ/m²	ISO 180/1A
Izod notched impact strength, -30°C		kJ/m²	ISO 180/1A
Hardness, Rockwell, M-scale	82		ISO 2039-2
[P]: Partial Break			
Thermal properties			
Melting temperature, 10°C/min	166	°C	ISO 11357-1/-3
Temp. of deflection under load, 1.8 MPa	94	°C	ISO 75-1/-2
Temp. of deflection under load, 0.45 MPa	150		ISO 75-1/-2
Vicat softening temperature, 50°C/h, 50N	161		ISO 306
Coeff. of linear therm. expansion, parallel		E-6/K	ISO 11359-1/-2
Coeff. of linear therm. expansion, normal		E-6/K	ISO 11359-1/-2
Thermal conductivity of melt		W/(m K)	Internal
Spec. heat capacity of melt	2210	J/(kg K)	Internal

Printed: 2023-08-07 Page: 1 of 8

Other properties

Humidity absorption, 2mm	0.2 %	Sim. to ISO 62
Water absorption, 2mm	0.75 %	Sim. to ISO 62
Density	1410 kg/m³	ISO 1183
Density of melt	1200 kg/m ³	Internal

Injection

Drying Temperature	100 - 120	°C	
Drying Time, Dehumidified Dryer	3 - 4	h	
Melt Temperature Optimum	180	°C	Internal
Max. mould temperature	80 - 120	°C	
Back pressure	4	MPa	
Injection speed	slow		
Ejection temperature	140	°C	Internal

Characteristics

Additives Release agent

Additional information

Injection molding

Standard reciprocating screw injection molding machines with a high compression screw (minimum 3:1 and preferably 4:1) and low back pressure (0.35 Mpa/50 PSI) are favored. Using a low compression screw (I.E. general purpose 2:1 compression ratio) can result in unmelted particles and poor melt homogeneity. Using a high back pressure to make up for a low compression ratio may lead to excessive shear heating and deterioration of the material.

Melt Temperature: Preferred range 182-199 C (360-390 F). Melt temperature should never exceed 230 C (450 F).

Mold Surface Temperature: Preferred range 82-93 C (180-200 F) especially with wall thickness less than 1.5 mm (0.060 in.). May require mold temperature as high as 120 C (250 F) to reproduce mold surface or to assure minimal molded in stress. Wall thickness greater than 3mm (1/8 in.) may use a cooler (65 C/150 F) mold surface temperature and wall thickness over 6mm (1/4 in.) may use a cold mold surface down to 25 C (80 F). In general, mold surface temperatures lower than 82 C (180 F) may hinder weld line formation and produce a hazy surface or a surface with flow lines, pits and other included defects that can hinder part performance.

Film extrusion

Standard extruders with a length to diameter ratio of at least 20:1 are recommended. The screw should be a high compression ratio of at least 3:1 and preferably 4:1 to assure good melting and melt homogeneity. The design should be approximately 35% each for feed and metering sections with the remaining 30% as the transition zone.

Printed: 2023-08-07 Page: 2 of 8

Melt temperature: 160-220 C (320-430 F)

Other extrusion Standard extruders with a length to diameter ratio of at least 20:1 are

recommended. The screw should be a high compression ratio of at least 3:1 and preferably 4:1 to assure good melting and uniform melt homogeneity. The design should be approximately 35% each for the feed and metering sections with the

remaining 30% as transition zone.

Melt temperature 180-220 C (355-430F)

Profile extrusion Standard extruders with a length to diameter ratio of at least 20:1 are

recommended. The screw should be a high compression ratio of at least 3:1 and preferably 4:1 to assure good melting and melt homogeneity. The design should be approximately 35% each for feed and metering sections with the remaining

30% as the transition zone.

Melt temperature: 180-220 C (360-430 F).

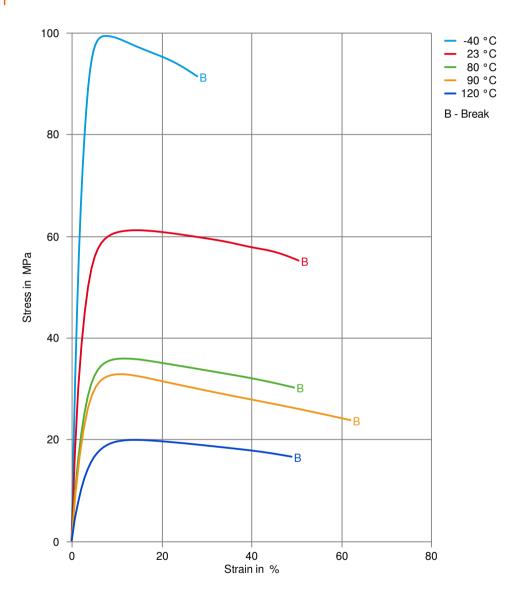
Sheet extrusion Standard extruders with a length to diameter ratio of at least 20:1 are

recommended. The screw should be a high compression ratio (at least 3:1 and preferably 4:1) to assure good melting and uniform melt homogeneity. The screw design should be approximately 35% each for the feed and metering sections with

the remaining 30% as the transition zone.

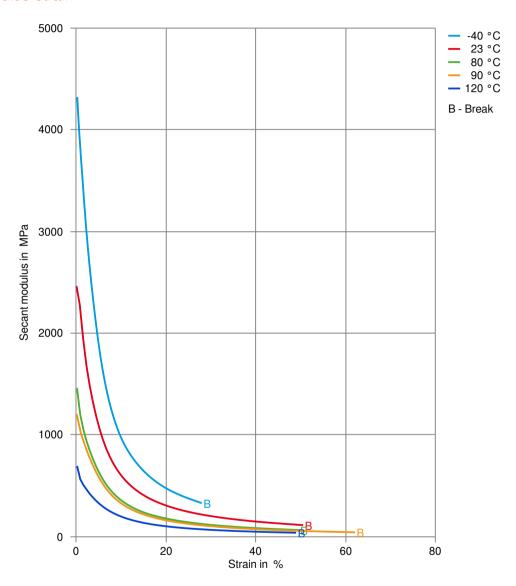
Melt temperature 180-190 C (355-375 F).

Blow molding Consult product information services.

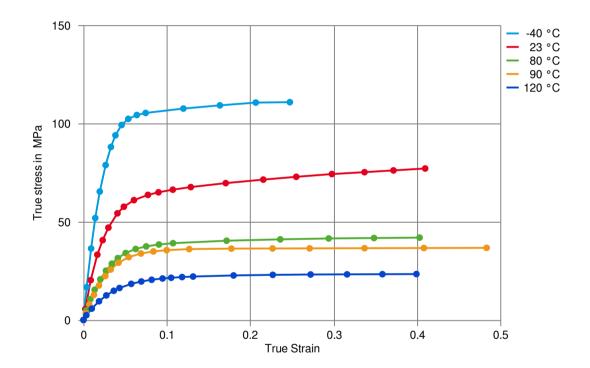

Calandering Consult product information services.

Compression molding Consult product information services.

Printed: 2023-08-07 Page: 3 of 8


Stress-strain

Printed: 2023-08-07 Page: 4 of 8


Secant modulus-strain

Printed: 2023-08-07 Page: 5 of 8

True stress-strain

Printed: 2023-08-07 Page: 6 of 8

Processing Texts

Pre-drying

Drying is not normally required. If material has come in contact with moisture through improper storage or handling or through regrind use, drying may be necessary to prevent splay and odor problems.

Injection molding

Standard reciprocating screw injection molding machines with a high compression screw (minimum 3:1 and preferably 4:1) and low back pressure (0.35 Mpa/50 PSI) are favored. Using a low compression screw (I.E. general purpose 2:1 compression ratio) can result in unmelted particles and poor melt homogeneity. Using a high back pressure to make up for a low compression ratio may lead to excessive shear heating and deterioration of the material.

Melt Temperature: Preferred range 182-199 C (360-390 F). Melt temperature should never exceed 230 C (450 F).

Mold Surface Temperature: Preferred range 82-93 C (180-200 F) especially with wall thickness less than 1.5 mm (0.060 in.). May require mold temperature as high as 120 C (250 F) to reproduce mold surface or to assure minimal molded in stress. Wall thickness greater than 3mm (1/8 in.) may use a cooler (65 C/150 F) mold surface temperature and wall thickness over 6mm (1/4 in.) may use a cold mold surface down to 25 C (80 F). In general, mold surface temperatures lower than 82 C (180 F) may hinder weld line formation and produce a hazy surface or a surface with flow lines, pits and other included defects that can hinder part performance.

Injection molding Preprocessing

Drying is generally not required because Celcon® and Hostaform® acetal copolymers are not hydroscopic nor are they degraded by moisture during processing. Excessive moisture can lead to splay (silver streaking) in molded parts. For better uniformity in molding especially when using regrind or material that has been stored in containers open to the atmosphere, recommended drying conditions are 80 C (180 F) for 3hours. Desiccant hopper dryers are not required. Maximum water content = 0.35%

Injection molding Postprocessing

Postprocessing conditioning and moisturizing are not required. It may be necessary to fixture large or complicated parts with varying wall thickness to prevent warpage while cooling to ambient temperature.

Other Approvals

Other Approvals

OEM	Specification	Additional Information
Continental	TST N 055 54.07	
Stellantis - Chrysler	CPN 1986	Black, pre-compounded or Salt & Pepper

Printed: 2023-08-07 Page: 7 of 8

Stellantis - Chrysler	CPN 4240	Natural
Ford	WSK-M4D635-A1	Natural & Black
GM	GMW22P-POM-C1	Natural & Black
Nissan	POM-IC1-1	
Toyota	TSM5515G-1A	
Li Auto	Q/LiA5310020	2021 (V2)

Printed: 2023-08-07 Page: 8 of 8

Revised: 2023-07-06 Source: Celanese Materials Database

NOTICE TO USERS: Values shown are based on testing of laboratory test specimens and represent data that fall within the standard range of properties for natural material. These values alone do not represent a sufficient basis for any part design and are not intended for use in establishing maximum, minimum, or ranges of values for specification purposes. Colourants or other additives may cause significant variations in data values. Properties of moulded parts can be influenced by a wide variety of factors including, but not limited to, material selection, additives, part design, processing conditions and environmental exposure. Other than those products expressly identified as medical grade (including by MT® product designation or otherwise), Celanese's products are not intended for use in medical or dental implants. Regardless of any such product designation, any determination of the suitability of a particular material and part design for any use contemplated by the users and the manner of such use is the sole responsibility of the users, who must assure themselves that the material as subsequently processed meets the needs of their particular product or use. To the best of our knowledge, the information contained in this publication is accurate; however, we do not assume any liability whatsoever for the accuracy and completeness of such information. The information contained in this publication should not be construed as a promise or guarantee of specific properties of our products. It is the sole responsibility of the users to investigate whether any existing patents are infringed by the use of the materials mentioned in this publication. Moreover, there is a need to reduce human exposure to many materials to the lowest practical limits in view of possible adverse effects. To the extent that any hazards may have been mentioned in this publication, we neither suggest nor guarantee that such hazards are the only ones that exist. We recommend that persons intending to rely on any recommendation or to use any e

© 2023 Celanese or its affiliates. All rights reserved. Celanese®, registered C-ball design and all other trademarks identified herein with ®, TM, SM, unless otherwise noted, are trademarks of Celanese or its affiliates. Fortron is a registered trademark of Fortron Industries LLC. KEPITAL is a registered trademark of Korea Engineering Plastics Company, Ltd.