

Low Emission

POM copolymer

Easy flowing Injection molding type for precision molded parts and thin-walled molded parts with high rigidity, hardness and toughness; good chemical resistance to solvents, fuel and strong alkalis as well as good hydrolysis resistance; high resistance to thermal and oxidative degradation.

Emission according to VDA 275 < 10 mg/kg

Monomers and additives are listed in EU-Regulation (EU) 10/2011 FDA compliant according to 21 CFR 177.2470 Burning rate ISO 3795 and FMVSS 302 < 75 mm/min for a thickness more than 1 mm.

Ranges of applications: automotive engineering, precision engineering, electric and electronical industry, domestic appliances.

FDA = Food and Drug Administration (USA) FMVSS = Federal Motor Vehicle Safety Standard (USA)

Rheological properties

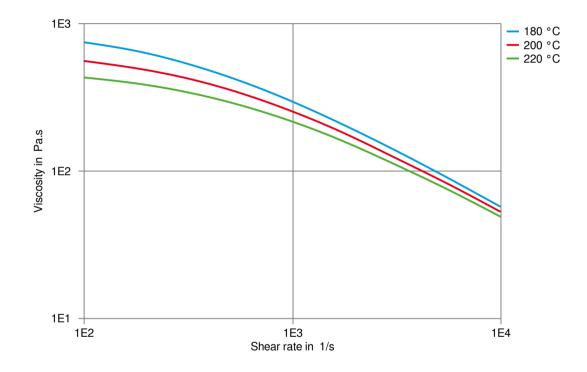
Melt volume-flow rate	12	cm ³ /10min	ISO 1133
Temperature	190	°C	
Load	2.16	kg	
Moulding shrinkage, parallel	2.0	%	ISO 294-4, 2577
Moulding shrinkage, normal	1.8	%	ISO 294-4, 2577
Typical mechanical properties			
Tensile Modulus	2900	MPa	ISO 527-1/-2
Yield stress, 50mm/min	65	MPa	ISO 527-1/-2
Yield strain, 50mm/min	9	%	ISO 527-1/-2
Nominal strain at break	25	%	ISO 527-1/-2
Flexural Modulus	2800	MPa	ISO 178
Tensile creep modulus, 1h	2500	MPa	ISO 899-1
Tensile creep modulus, 1000h	1300	MPa	ISO 899-1
Charpy impact strength, 23°C	200	kJ/m²	ISO 179/1eU
Charpy impact strength, -30 °C		kJ/m²	ISO 179/1eU
Charpy notched impact strength, 23°C	6.5	kJ/m²	ISO 179/1eA
Charpy notched impact strength, -30°C	6	kJ/m²	ISO 179/1eA
Ball indentation hardness, H 358/30	143	MPa	ISO 2039-1
Thermal properties			
Melting temperature, 10°C/min	166	°C	ISO 11357-1/-3
Temp. of deflection under load, 1.8 MPa	106	°C	ISO 75-1/-2
Vicat softening temperature, 50°C/h, 50N	151	°C	ISO 306
Coeff. of linear therm. expansion, parallel	110	E-6/K	ISO 11359-1/-2
Thermal conductivity of melt	0.155	W/(m K)	Internal
Spec. heat capacity of melt		J/(kg K)	Internal

Flammability			
Burning Behav. at 1.5mm nom. thickr	n. HB	class	UL 94
Thickness tested		mm	UL 94
Burning Behav. at thickness h	HB	class	UL 94
Thickness tested	3.00	mm	UL 94
UL recognition	yes		UL 94
Electrical properties			
Relative permittivity, 100Hz	4		IEC 62631-2-1
Relative permittivity, 1MHz	4		IEC 62631-2-1
Dissipation factor, 100Hz	20	E-4	IEC 62631-2-1
Dissipation factor, 1MHz	50	E-4	IEC 62631-2-1
Volume resistivity	1E12	Ohm.m	IEC 62631-3-1
Surface resistivity	1E14	Ohm	IEC 62631-3-2
Electric strength	35	kV/mm	IEC 60243-1
Comparative tracking index	PLC 0	PLC	UL 746A
Other properties			
Humidity absorption, 2mm	0.2	%	Sim. to ISO 62
Water absorption, 2mm	0.65	%	Sim. to ISO 62
Density	1410	kg/m³	ISO 1183
Density of melt	1200	kg/m³	Internal
Injection			
Drying Temperature	100 - 120	°C	
Drying Time, Dehumidified Dryer	3 - 4	h	
Processing Moisture Content	0.15	%	
Screw tangential speed	0.2 - 0.21		
Max. mould temperature	80 - 120	°C	
Back pressure		MPa	
Injection speed	slow-medium		
Ejection temperature	140	°C	Internal
Characteristics			
	Delegeneration		

Additives

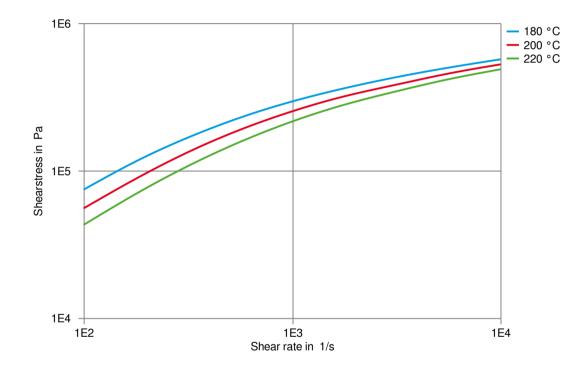
Release agent

Additional information

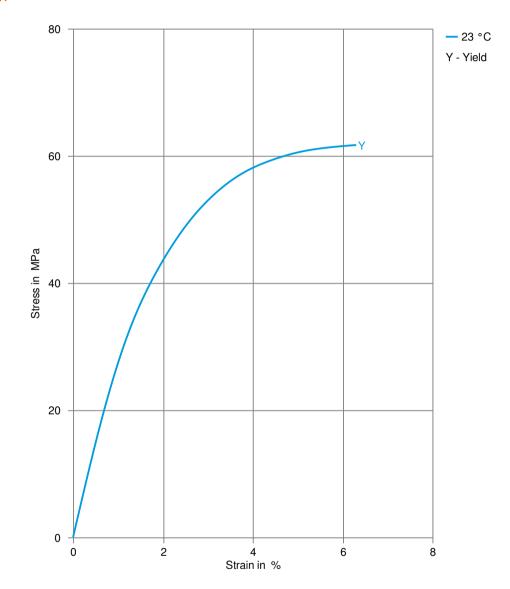

Injection molding

Standard injection moulding machines with three phase (15 to 25 D) plasticating screws will fit.

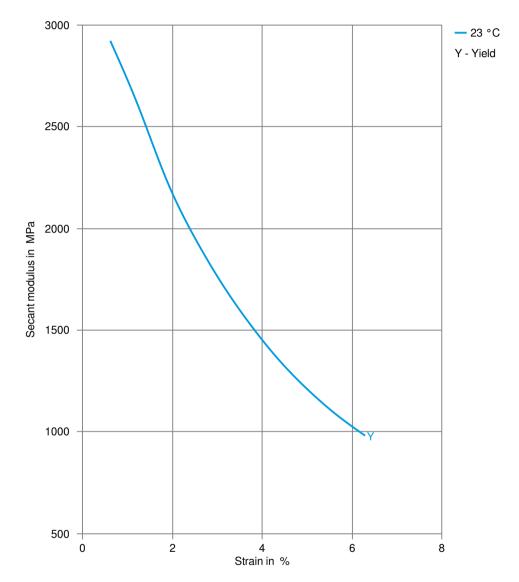
Printed: 2023-08-07



Viscosity-shear rate


Shearstress-shear rate

HOSTAFORM[®] C 13021 XAP[®]


Stress-strain

HOSTAFORM[®] C 13021 XAP[®]

Secant modulus-strain

HOSTAFORM[®] C 13021 XAP[®]

Processing Texts		
Pre-drying	It is normally not necessary to dry HOSTAFORM. However, should there be surface moisture (condensate) on the molding compound as a result of incorrect storage, drying is required. A circulating air drying cabinet can be used for this purpose if the granul	
Longer pre-drying times/storage	The product can then be stored in standard conditions until processed.	
Injection molding	Standard injection moulding machines with three phase (15 to 25 D) plasticating screws will fit.	
Injection molding Preprocessing	To achive low emission values pre drying using a recirculating air dryer (100 to 120 $^{\circ}$ C / max. 40 mm layer / 3 to 6 hours) is recommended.	
	Max. Water content 0,1 %	
Injection molding Postprocessing	Conditioning e.g. moisturizing is not necessary.	

Printed: 2023-08-07

Revised: 2023-02-23 Source: Celanese Materials Database

Page: 7 of 7

NOTICE TO USERS: Values shown are based on testing of laboratory test specimens and represent data that fall within the standard range of properties for natural material. These values alone do not represent a sufficient basis for any part design and are not intended for use in establishing maximum, minimum, or ranges of values for specification purposes. Colourants or other additives may cause significant variations in data values. Properties of moulded parts can be influenced by a wide variety of factors including, but not limited to, material selection, additives, part design not intended for use in medical or dental implants. Regardless of any such product expressly identified as medical grade (including by MT® product designation or otherwise), Celanese's products are not intended for use in medical or dental implants. Regardless of any such product designation, any determination of the suitability of a particular material and part design for any use contemplated by the users and the manner of such use is the sole responsibility of the users, who must assure themselves that the material as subsequently processed meets the needs of their particular product or use. To the best of our knowledge, the information contained in this publication is accurate; however, we do not assume any liability whatsoever for the accuracy and completeness of such information. The information contained in this publication as a promise or guarantee of specific properties of our products. It is the sole responsibility of the users to investigate whether any existing patents are infringed by the use of the materials mentioned in this publication. Moreover, there is a need to reduce human exposure to many materials the lowest that texist. We recommend that persons intending to rely on any recommendation or to use any equipment, processing technique or material mentioned in this publication should satisfy themselves that they can meet all applicable safety and health standards. We strongly recommend that users seek and achere to the m

© 2023 Celanese or its affiliates. All rights reserved. Celanese®, registered C-ball design and all other trademarks identified herein with ®, TM, SM, unless otherwise noted, are trademarks of Celanese or its affiliates. Fortron is a registered trademark of Fortron Industries LLC. KEPITAL is a registered trademark of Korea Engineering Plastics Company, Ltd.